Epson с пьезоэлектрической печатью. Какая технология печати лучше? Термическая струйная или пьезоэлектрическая струйная? И чем

План

Вконтакте

Одноклассники

Технология термоструйной печати основана на свойстве чернил увеличиваться в объёме при нагревании. Разогретые чернила, увеличиваясь в объёме, выталкивают в сопла печатающей головки принтера микроскопические чернильные капли, которые формируют изображение на бумаге. В общем виде технология термоструйной печати представлена ниже.

Технология термоструйной печати

Термоструйная печать – это наиболее популярная технология струйной печати, которая используется при производстве 75 % струйных принтеров.

Удельный вес принтеров, использующих термоструйную технологию печати

Наибольший вклад в развитие технологии термоструйной печати внесли корпорации Canon и HP , которые в 70-х годах ХХ века независимо друг от друга разработали две технологии печати: Bubble Jet (Canon) и Thermal Inkjet (HP).

Технологии термоструйной печати

Технология термоструйной печати Bubble Jet была представлена на суд общественности в 1981 году на выставке «Grand Fair». В 1985 году с использованием инновационной технологии был выпущен легендарный монохромный принтер Canon BJ-80, в 1985 году – первый цветной принтер Canon BJC-440.

Схематичное изображение технологии струйной печати Bubble Jet

Суть технологии струйной печати Bubble Jet заключается в следующем. В каждое сопло печатающей головки встраивается терморезистор (нагреватель) для мгновенного разогрева чернил, которые при температуре свыше 500°С, испаряясь, образуют пузырь, выталкивающий каплю чернил наружу. Затем терморезистор отключается, чернила охлаждаются и пузырь исчезает, а зона пониженного давления затягивает новую порцию чернил.

Интересно, что чернила разогреваются до температуры 500°С всего лишь за 3 микросекунды, а капли вылетают из сопла со скоростью 60 км/ч. Ежесекундно в каждом сопле печатающей головки цикл нагревания и охлаждения чернил повторяется 18 тысяч раз.

Вторая технология струйной печати - Thermal Inkjet – начала разрабатываться компанией HP в 1984 году, но первый принтер ThinkJet, основанный на данной технологии печати, был внедрён в массовое производство значительно позднее.

Схематическое изображение технологии струйной печати Thermal Inkjet

Технология Thermal Inkjet основана на том же принципе печати, что и технология Bubble Jet, с той лишь разницей, что в принтерах, использующих технологию Bubble Jet, терморезисторы расположены в микроскопических соплах печатающей головки, а в принтерах, использующих технологию Thermal Inkjet, они находятся непосредственно за соплом.

Таким образом, технологии Bubble Jet и Thermal Inkjet различаются лишь в деталях.

Основными преимуществами термоструйной печати перед пьезоструйной являются отсутствие движущихся механизмов и стабильность работы. Наряду с этим термоструйная печать имеет один существенный недостаток: она не позволяет контролировать размер и форму чернильных капель. Кроме того, когда чернильные капли вылетают из сопла печатающей головки, вместе с ними вырываются капли-спутники (сателлиты), образующиеся при закипании чернил. Появление таких «спутников» может быть спровоцировано нестабильной вибрацией чернильной массы во время её выброса из сопла. Именно капли-спутники являются причиной образования нежелательного контура («чернильного тумана») вокруг отпечатка и смешения цветов в графических файлах.

Некоторые из открытий или изобретений, уже давным-давно ставшие привычными, со временем обрастают разнообразными красивыми мифами и легендами.
В одном из таких повествований рассказывается о сотруднике небольшой исследовательской лаборатории, принадлежавшей крупной компьютерной фирме. После бессонной ночи, проведенной в работе над новой капризной конструкцией какой-то электронной штуковины, этот сотрудник по невнимательности положил паяльник рядом с наполненным канифолью шприцем (хочется приписать, что в нем были чернила, но это не так). Естественно, в итоге была испорчена спецодежда, но самое главное - возникла идея термоструйной печати. Белый халат с пятном отправился в химчистку, а струйная технология стараниями Canon, Hewlett-Packard, Epson, Lexmark и других компаний пришла в офисы и дома, поражая своей доступностью и красочностью.

Почему струйник?

В последние несколько лет компьютерная индустрия переживает самый настоящий чернильный бум. Струйные принтеры для многих пользователей являются наиболее доступными и универсальными печатающими устройствами. Получаемые на них изображения во многих случаях превосходят по качеству типографские оттиски, а максимальная скорость печати уже вплотную приблизилась к показателям производительности младших моделей лазерных принтеров. Сравнимая с любительскими фотографиями из мини-лабов полноцветная фотореалистичная струйная печать стала главным козырем производителей струйных принтеров в борьбе за привлечение новых покупателей.

В погоне за покупателем и на зависть конкурентам постоянно уменьшается размер капель и разрабатываются новые технологии для улучшения цветопередачи. От новых названий и логотипов голова уже идет кругом. Естественно, что у наиболее любознательных возникает вопрос: так уж уникальны все принципы и идеи, которыми гордится каждый из производителей?

В гордом одиночестве

Уже довольно давно в этом секторе рынка образовалось два лагеря. В одном единолично правит бал Epson с пьезоэлектрической технологией, а в другом собрался целый альянс приверженцев «кипящих чернил».

В основе пьезоэлектрического метода печати лежит свойство некоторых кристаллических веществ изменять свои физические размеры под действием электрического тока. Самым ярким примером служат кварцевые резонаторы, применяемые во многих электронных устройствах. Это явление было использовано для создания миниатюрного насоса, в котором изменение напряжения вызывает сжатие небольшого объема чернил в узком капиллярном канале и моментальный выброс его через сопло.

Печатающая головка пьезоэлектрического струйного принтера должна иметь высокую надежность, поскольку в силу довольно большой стоимости она практически всегда встроена в принтер и не меняется при установке нового чернильного картриджа, как это происходит в случае термической струйной печати. Такая конструкция пьезоэлектрической головки имеет определенные преимущества, но при этом существует постоянная опасность выхода принтера из строя по причине попавшего в систему подачи чернил пузырька воздуха (что может произойти при смене картриджа) или обычного простоя в течение нескольких недель . При этом сопла закупориваются, качество печати ухудшается, а для восстановления нормальных режимов требуется квалифицированное обслуживание, которое часто невозможно провести вне сервисного центра.

Не отрываясь от коллектива

Пока Epson шла своим собственным путем, периодически удивляя компьютерное сообщество очередным прорывом, остальные игроки рынка струйной печати не менее успешно применяли печатающую головку иной конструкции. Большинство из них считают свои разработки уникальными, хотя их суть до банального проста, а разница зачастую заключается лишь в названии.

Так, Canon использует термин Bubble-Jet, который вольно можно перевести как «пузырьковая печать». Остальные же не стали городить огород и согласились с более привычным словосочетанием «термоструйная печать».

Термические струйные принтеры работают подобно гейзеру: внутри камеры с ограниченным объемом чернил благодаря миниатюрному нагревательному элементу образуется пузырек пара, который мгновенно увеличивается в объеме, выталкивая каплю красителя на бумагу.

Применяя такую технологию, нетрудно получить миниатюрные печатающие элементы, расположенные с большой плотностью, что сулит разработчикам потенциальное увеличение разрешающей способности с солидным запасом на будущее. Однако у термической струйной печати есть и оборотная сторона. Из-за постоянного перепада температур постепенно происходит разрушение печатающей головки, и в результате ее приходится заменять вместе с чернильным картриджем.

Больше названий - громких и разных!

Пузырьки пузырьками, а простыми картинками уже давно никого не удивить. Вот и приходится бороться за каждый пиколитр в капле, за каждый оттенок на бумаге. Но способов, позволяющих повысить качество конечного изображения, на самом деле не так уж и много. Самый очевидный и доступный вариант заключался в увеличении количества цветов чернил. К четырем базовым цветам (черному, голубому, малиновому и желтому) многие производители добавили еще два - светло-голубой и светло-малиновый. В итоге появилась возможность воспроизводить более светлые оттенки, не уменьшая плотность наносимых на бумагу точек, что позволило сделать растровую структуру изображения на светлых участках, где она особенно хорошо различима, менее заметной. В Canon такую технологию назвали PhotoRealism, в Hewlett-Packard - PhotoREt, а в Epson - Photo Reproduction Quality.

Но прогресс, стимулируемый конкурентной борьбой, не стоит на месте. Следующий шаг на пути к идеалу был сделан путем уменьшения и динамического изменения размеров чернильной капли, а вместе с ней и конечной точки на бумаге. Управляя объемом «порции» наносимых на бумагу чернил, можно добиться более светлых оттенков, не увеличивая расстояния между точками. Это дает возможность сделать растровую структуру еще менее заметной.

Без дополнительных ухищрений и значительного изменения технологического процесса подобного эффекта могла добиться разве что Epson. Дело в том, что принцип работы пьезоэлектрической головки позволяет управлять размером капли, изменяя величину управляющего напряжения, прикладываемого к пьезоэлементу. Эта технология получила название Variable Dot Size. Ну а приверженцам пузырьковой печати пришлось серьезно поработать над изменением конструкции сопел. В каждом из них разместили несколько нагревательных элементов разной мощности.

Включая их по одному или все одновременно, можно получать капли различных размеров, как это и происходит в современных термических струйных принтерах. Canon окрестила свои разработки в этой области Drop Modulation, а HP применила уже готовое название с дополнительными индексами - PhotoREt II и PhotoREt III. Помимо возможности управления размером капли появилась и возможность последовательного нанесения нескольких капель в одну и ту же точку поверхности листа бумаги.

Но качество печати зависит не только от технического совершенства конструкции самого принтера, но и от других, не менее значимых факторов.

За линией струйного фронта

С увеличением разрешающей способности и скорости печати выяснилось, что погоня за улучшением этих характеристик сама по себе значительного выигрыша дать не сможет, если не улучшить носитель изображения, то есть бумагу. Казалось бы, что может быть проще бумаги? Но не тут-то было! Любые «хитрые» технологии будут бессильны, если в лоток принтера положить простую офисную бумагу.

Прекрасный лист формата А4, от вида и запаха которого с удовольствием начинает урчать любой лазерный принтер, оказывается совершенно неподготовленным к потокам разноцветных чернил, извергаемым на него из сотен сопел.

Поверхность обычной бумаги имеет волокнистую структуру, что обусловлено технологией ее производства. В итоге миниатюрные, строго рассчитанные по размеру капли начинают растекаться по поверхности самым непредсказуемым образом. При этом совершенно не важно, какая печать используется - термическая или пьезоэлектрическая. Одним из решений этой проблемы является использование пигментных чернил, представляющих собой взвесь дисперсных частиц в бесцветном жидком носителе, поскольку твердые частицы не могут проникнуть во внутренние слои и растечься по волокнам бумаги.

Чернила на пигментной основе позволяют получать яркие и насыщенные оттенки, однако есть у них и определенные недостатки, в частности низкая стойкость к внешним воздействиям.

Технология струйной печати такова, что наилучшего результата можно достичь только при использовании специальной бумаги. Фотографии на обычной бумаге выглядят более блеклыми и менее четкими. В отличие от обычной бумага со специальным покрытием и так называемая фотобумага имеют несколько специальных слоев. Распечатки на ней практически неотличимы от фотографий, полученных при печати с использованием химического фотопроцесса.

Простая бюджетная бумага для струйной печати, как правило, имеет плотность 90-105 г/м 2 , относительно небольшую толщину и прекрасный показатель белизны. Вследствие специальной обработки лицевой или обеих сторон такая бумага более устойчива к капризам чернил и препятствует их растеканию и проникновению вглубь листа.

Специальная фотобумага с глянцевой или матовой поверхностью обычно имеет плотность до 200 г/м 2 и представляет собой многослойное произведение современных технологий. Каждый из слоев выполняет определенные функции.

Нижний слой является основанием, обеспечивающим прочность и жесткость документа. Следующий слой играет роль оптического отражателя, придавая изображению яркость и белизну. Далее располагается основной связующий керамический или пластиковый слой, составляющий множество вертикальных каналов без длинных волокнистых образований вдоль поверхности листа и обеспечивающий необходимую плотность чернил в печатаемой точке. На абсорбент наносится последний, глянцевый или матовый защитный слой, придающий поверхности прочность и защищающий ее от внешних воздействий.

В процессе печати керамические частицы поглощают чернила, не давая им растекаться по поверхности. В результате форма точек и их ориентация остаются неизменными. Кроме того, можно не бояться случайного попадания влаги, поскольку глубокие и расположенные строго вертикально микрокапилляры сводят вероятность растекания к минимуму.

Специальная бумага для струйных принтеров стала панацеей от многих бед, но, к сожалению, довольно дорогой. Хочется, конечно, но... А потратиться стоит, чтобы хоть раз сравнить «небо» и «землю».

КомпьютерПресс 11"2001

Чтобы мельчайшие капельки краски смешались, образовали миллионы оттенков и попали на материал, в конструкции современного широкоформатного принтера работает целая система подачи чернил , в которой создается избыточное давление. За счет него краска и выбрасывается на поверхность.

Еще совсем недавно все принтеры работали по одному методу, и давление создавалось путем нагрева чернил. Этот метод называется термическим, и сегодня применим, как правило, в оргтехнике для офиса. В промышленных масштабах используется редко.

Для больших объемов печати и высоких скоростей, а также идеального стабильного результата, вне зависимости от материала, был создан другой метод - механический или пьезоэлектрический. На нем работают принтеры VitRex и Kincolor .

Вместе с оригинальной технологией подачи чернил в сопло в широкоформатных принтерах невозможно обойтись без главного элемента - особой печатной головки - системы drop-on demand («непрерывный поток»). Симбиоз этих двух деталей дает превосходные результаты печати на любых материалах, повышает скорость печати и позволяет работать с разными чернилами.

Печатная головка действует следующим образом: в ней находится микрокристалл, который изменяет свою форму под воздействием электричества, тем самым создавая давление на чернильную плату. В это время в дюзы печатающей головки проталкиваются капли чернил.

С широкоформатниками с системой «непрерывного потока» совместимы печатные головки фирмы Epson , Konica Minolta , Spectra и XAAR . Кстати говоря, сам метод пьезоэлектрической подачи чернил был разработан именно в компании Epson, главным образом, для своих устройств. Теперь печатные головки нового поколения используются в других принтерах.

Микропьезо от Epson

Итак, для реализации данного метода применяется многослойный пьезо-элемент, его толщина всего 20 микрометров , но он обладает большими преимуществами:

  • давление формируется высокое, что позволяет быстро и непрерывно подавать краску;
  • срабатывает всегда без сбоев;
  • обеспечивает долговечность работы печатной головки и экономичность расхода краски;
  • поддерживает высокую скорость печати;
  • делает возможным печать с расширением 1440-2880 DPI .

Использование метода пьезо-элемента напрямую влияет на качество печати и производительность принтеров.

Три составляющих успеха

Стоит отметить, что не только технология пьезоэлектрической печатающей головки работает на получение непревзойденного качества печати, - также очень важен размер капель и такая система, как активный контроль мениска.

Что такое менисковый контроль? Благодаря нему на материал попадает только одна основная капля за один заход. Мениск осуществляет возвратное движение и втягивает капли-сателлиты, которые неизбежно формируются после основной. У термоструйных печатных головок такой технологии нет, и соответственно, качество печати не такое высокое, а самое главное - возможно появление брызг.

Технология пьезоэлектрического давления вместе с активным контролем мениска приводят к тому, что:

  • капля не меняет и не нарушает траекторию, попадая «точно в цель», в определенную зону на материале;
  • капля остается правильной формы - в виде сферы, а значит, и точка на материале будет правильной формы;
  • «чернильный туман» не появляется на носителе.

Все это делает изображение максимально четким.

Также на формирование точки на материале и на параметры капли влияет и форма сопел в печатающей головке. Здесь термическая печатающая головка также отличается от пьезоэлектрической не в лучшую сторону. В первом случае (термоструйная печать) форма сопел не имеет ровных краев. Их можно, скорее, назвать рваными. Тогда как в пьезоэлектрической печати форма сопел ровная.

Плюс ко всему важен и размер сопел. Если сопла маленькие, то велика вероятность, что они быстрее выйдут из строя, поскольку чернила там быстрее засыхают, а дюзы забиваются.

Как же связан размер сопла и процесс формирования капли? Как известно, изображение будет иметь лучшее качество, если в процессе печати использовалась технология переменного размера капли или микрокапли, размер которой не превышает или даже меньше 40 пиколитров .

Чтобы хоть немного приблизить данные параметры и, соответственно, улучшить качество печати, в термоструйных принтерах часто применяют стандартный метод - уменьшается размер диаметра сопла. Как правило, в большинстве моделей он составляет 4-5 мкм . Если взглянуть на дюзы термоструйной печатающей головки и пьезоэлектрической, невооруженным глазом можно увидеть, что дюзы второй значительно больше, так как их диаметр равен 25 мкм . Здесь в работу вступает уже упомянутый выше контроль мениска, поэтому капля, которая извлекается из такой «большой» дюзы, может быть даже меньше по размеру, чем капля из мизерных сопел термоструйной головки.

Температура и размер капли

И последний момент, который также имеет важное значения для качества печати, - это влияние температуры на работу печатающей головки и состояние чернил.

Температура чернил напрямую связана с их консистенцией и влияет на вязкость. А от нее, в свою очередь, зависит размер капель. При работе печатной головки температура среды повышается, тем самым снижая степень вязкости чернил и увеличивая размеры выпрыскиваемых капель. Если температура в головке падает ниже определенного показателя нормы, то вязкость чернил повышается, а размер капли наоборот - уменьшается.

Какой можно сделать вывод из этого? Температуру среды при работе печатной головки необходимо контролировать. Это обеспечит постоянную консистенцию чернил и стабильный нормативный размер капли, а значит, дюзы будут срабатывать без сбоев.

При работе пьезоэлектрической печатной головкой среда вокруг нагревается незначительно, в отличие опять же от термоструйной. Конечно, в обоих устройствах температура при включении и после непрерывной работы в течение нескольких часов будет отличаться.

В печатающих головках Epson изменения температуры отслеживаются, так как в конструкции имеется встроенный датчик, в зависимости от этого, учитывая температурный режим, меняется напряжение, подаваемое к пьезо-элементу.

Предлагаем Вам ознакомиться с нашим ассортиментом широкоформатных принтеров, пройдя по ссылке:

Среди всех технологий создания изображения, свою популярность завоевал струйный способ печати.

Его применяют в принтерах, в том числе широкоформатных.

Преимуществом такой технологии является то, что капля краски формируется только в нужный момент, что позволяет получить высококачественные изображения.

Термическая струйная печать что это

В этой статье расскажем, термическая струйная печать что это, ее преимущества, принцип работы, и в каких случаях применяется.

Готовое изображение состоит из большого количества микроскопических точек краски различного цвета (цветная струйная термическая печать).

В момент, когда нужно нанести изображение, в микроскопической камере сопла находится краска, которую нужно каким-то образом вытолкнуть на поверхность запечатываемого материала (например, бумаги).

Термический способ печати заключается в том, что в камере находится нагревательный элемент, на который в момент печати поступает ток. Продолжительность одномоментного включения тока составляет малый период, до 2 миллионных доли секунды.

Под его действием элемент нагревается, температура краски увеличивается до 500º, увеличивается объем краски в сопле, что повышает давление в камере, из нее выталкивается нужна порция красителя. Есть информация, что в камере, в момент нагревания образуется давление больше 100 атмосфер, что достаточно много.

После этого образуется вакуум, который способствует втягиванию новой порции краски. Этот процесс повторяется по несколько тысяч раз в секунду.

Оборудование для термической струйной печати

Этот способ печати применяется в подавляющем большинстве струйных принтеров. Технология была представлена на рынок в начале 80-х годов прошлого века. Ведущими производителями являются компании Canon, HP, Lexmark.

Современное оборудование позволяет формировать капли размером до 35-40 мкм, что дает возможность получить высококачественное и детализированное изображение.

Как правило, в термических принтерах есть две печатающие головки. Одна предназначена для печатания черной краской, а другие для цветной печати (голубая, пурпурная и желтая краски).

В одной печатающей головке, в зависимости от модели, может быть до нескольких сотен сопел.

В зависимости от модели, головки могут быть неразрывно соединены с картриджами или встроенные в принтер, то есть многоразового пользования. Последний вариант дает возможность быть более уверенным в качестве печати, ведь этот элемент не успевает выработать свой ресурс. Но таким образом цена печати становится больше.

Преимущества и недостатки термической печати

Термическая струйная печать широко применяется в печатной технике, благодаря:

  • малошумность работы оборудования,
  • обеспечивает высокое качество и разрешение печати,
  • технология печати термическая струйная позволяет получить надежные печатающие головки,
  • стабильность работы принтеров на этой технологии,
  • высокая скорость печатания.

Недостатки термического печати:

Не всегда удается точно регулировать размер полученных капель,

В процессе работы могут образуются капли спутники, которые ухудшают качество полученного изображения,

Печатная головка иногда требует чистки,

Желательно выбирать специальную бумагу, который уменьшит растекания краски и коробление бумаги,

Дорогие картриджи с краской. Хотя некоторые рискуют и заказывают неоригинальные, которые немного дешевле.

Вывод

Струйная термальная печать дает возможность получить профессиональную печать по невысокой цене. Качество полученного изображения зависит от точности изготовления сопла, строения эжекционной камеры. Также, на получить изображения влияют характеристики используемого красителя (вязкость, поверхностное натяжение, способность к нагреву и испарения).

Надеемся, вам была интересна эта статья, которая дала ответ на вопрос: термическая струйная печать что это и в каких случаях применяется.

Работа различных приборов пьезоэлектроники основана на пьезоэлектрическом эффекте , который был открыт в 1880 г. французскими учеными братьями П. Кюри и Ж. Кюри. Слово "пьезоэлектричество" означает "электричество от давления". Прямой пьезоэлектрический эффект или просто пьезоэффект состоит в том, что при давлении на некоторые кристаллические тела, называемые пьезоэлектриками, на противоположных гранях этих тел возникают равные по величине, но разные по знаку электрические заряды. Если изменить направление деформации, т. е. не сжимать, а растягивать пьезоэлектрик, то заряды на гранях изменят знак на обратный.

К пьезоэлектрикам относятся некоторые естественные или искусственные кристаллы, например, кварц или сегнетова соль, а также специальные пьезоэлектрические материалы, например, титанат бария. Кроме прямого пьезоэффекта применяется также и обратный пьезоэффект , который состоит в том, что под действием электрического поля пьезоэлектрик сжимается или расширяется в зависимости от направления вектора напряженности поля. У кристаллических пьезоэлектриков интенсивность прямого и обратного пьезоэффекта зависит от того, как направлена относительно осей кристалла механическая сила или напряженность электрического поля.

Для практических целей применяют пьезоэлектрики различной формы: прямоугольные или круглые пластинки, цилиндры, кольца. Из кристаллов такие пьезоэлементы вырезают определенным образом, соблюдая при этом ориентировку относительно осей кристалла. Пьезоэлемент помещают между металлическими обкладками или наносят металлические пленки на противоположные грани пьезоэлемента. Таким образом, получается конденсатор с диэлектриком из пьезоэлектрика

Если к такому пьезоэлементу подвести переменное напряжение, то пьезоэлемент за счет обратного пьезоэффекта будет сжиматься и расширяться, т. е. совершать механические колебания. В этом случае энергия электрических колебаний превращается в энергию механических колебаний с частотой, равной частоте приложенного переменного напряжения. Так как пьезоэлемент обладает определенной частотой собственных колебаний, то может наблюдаться явление резонанса. Наибольшая амплитуда колебаний пластинки пьезоэлемента получается при совпадении частоты внешней ЭДС с собственной частотой колебаний пластинки. Следует отметить, что имеется несколько резонансных частот, которые соответствуют различным типам колебаний пластинки.

Под воздействием внешней переменной механической силы на пьезоэлементе возникает переменное напряжение той же частоты. В этом случае механическая энергия преобразуется в электрическую и пьезоэлемент становится генератором переменной ЭДС. Можно сказать, что пьезоэлемент является колебательной системой, в которой могут происходить электромеханические колебания. Каждый пьезоэлемент эквивалентен колебательному контуру. В обычном колебательном контуре, составленном из катушки и кондера, периодически осуществляется переход энергии электрического поля, сосредоточенной в кондере, в энергию магнитного поля катушки и наоборот. В пьезоэлементе механическая энергия периодически переходит в электрическую. Посмотрим на эквивалентную схему пьезоэлемента:

Рис. 1 - Эквивалентная схема пьезоэлемента

Индуктивность L отражает инерционные свойства пьезоэлектрической пластинки, емкость С характеризует упругие свойства пластинки, активное сопротивление R - потери энергии при колебаниях. Емкость С 0 называется статической и представляет собой обычную емкость между обкладками пьезоэлемента и не связана с его колебательными свойствами.

Пьезоэлектрические струйные головки для принтеров были разработаны в семидесятых годах. В большинстве пьезоэлектрических струйных принтеров избыточное давление в камере с чернилами создается с помощью диска из пьезоэлектрика, который изменяет свою форму - выгибается, при подведении к нему электрического напряжения. Выгнувшись, диск, который является одной из стенок камеры с чернилами, уменьшает ее объем. Под действием избыточного давления жидкие чернила вылетают из сопла в виде капли. Пионер пьезоэлектрической технологии- фирма Epson не смогла успешно соревноваться в объеме продаж со своими конкурентами Canon и Hewlett-Packard из-за сравнительно высокой технологической стоимости пьезоэлектрических печатающих головок - они дороже и сложнее, чем пузырьковые печатающие головки.

Основным минусом струйных принтеров Epson является то, что головка стоит столько же, сколько принтер. И если она засыхает, то целесообразно просто выкинуть принтер.

Для остальных принтеров минусом является стоимость расходных материалов.

3.Принцип работы лазерных печатающих устройств. Лазерные и светодиодные принтеры. Основные характеристики, достоинства и недостатки.

Толчком к созданию первых лазерных принтеров послужило появление новой технологии, разработанной фирмой Canon. Специалистами этой фирмы, специализирующейся на разработке копировальной техники, был создан механизм печати LBP-CX. Фирма Hewlett-Packard в сотрудничестве с Canon приступила к разработке контроллеров, обеспечивающих совместимость механизма печати с компьютерными системами PC и UNIX.

Первоначально конкурируя с лепестковыми и матричными принтерами, лазерный принтер быстро завоевал популярность во всем мире. Другие компании-разработчики копировальной техники вскоре последовали примеру фирмы Canon и приступили к исследованиям в области создания лазерных принтеров. Другим важным событием явилось появление цветных лазерных принтеров . Фирмы XEROX и Hewlett-Packard представили новое поколение принтеров, которые использовали язык описания страниц PostScript Level 2, поддерживающий цветное представление изображения и позволяющий повысить как производительность печати , так и точность цветопередачи . Лазерные принтеры формируют изображение путем позиционирования точек на бумаге (растровый метод). Первоначально страница формируется в памяти принтера и лишь затем передается в механизм печати. Растровое представление символов и графических образов производится под управлением контроллера принтера. Каждый образ формируется путем соответствующего расположения точек в ячейках сетки или матрицы.

Несмотря на наступление струйных принтеров , господство лазерных устройств на рабочих местах в офисе в настоящее время не подлежит сомнению. Причин, объясняющих популярность лазерных принтеров, много. В них используется апробированная технология, зарекомендовавшая себя высокой надежностью: печать скоростная, бесшумная и вполне доступна по цене, ее качество в большинстве случаев приближается к типографскому. Изготовители лазерных принтеров также не стояли на месте, продолжая повышать скорость и качество печати, добиваясь при этом снижения цены. В 1994 г. номинальное быстродействие типичного лазерного принтера было равно 4 стр./мин., разрешение - 300 dpi при цене $800. В 1995 г мы стали свидетелями увеличения числа изделий, печатающих со скоростью 6 стр./мин, при разрешении 600 dpi и имеющих реальную розничную цену $350.

Каждые два-три года изготовители повышают скорость печати на 1 или 2 стр./мин., и к концу десятилетия персональные лазерные принтеры достигли быстродействия 12-15 стр./мин. Кроме того, уменьшаются габариты лазерных принтеров - таким образом изготовители добиваются снижения цены и возможности установки их изделий на тесном рабочем столе. Одним из следствий этого зачастую становятся ограниченные по сравнению с крупногабаритными моделями средства для работы с бумагой. Входные емкости вмещают, как правило, не более 100 листов, а карман для бумаги нередко одновременно предназначен и для ручной подачи листов - для этого надо сначала удалить из него стопу бумаги. Емкость выходных лотков тоже ограниченна - если принтер вообще оснащен таким приспособлением. У некоторых принтеров тракт подачи бумаги настолько извилист, что поставщики не рекомендуют использовать машины для печати на липких наклейках.

Лазерные принтеры, получившие наибольшее распространение, используют технологию фотокопирования, называемую еще электрофотографической, которая заключается в точном позиционировании точки на странице посредством изменения электрического заряда на специальной пленке из фотопроводящего полупроводника. Подобная технология печати применяется в копировальных аппаратах.

Важнейшим конструктивным элементом лазерного принтера является вращающийся фотобарабан , с помощью которого производится перенос изображения на бумагу. Фотобарабан представляет собой металлический цилиндр, покрытый тонкой пленкой из фотопроводящего полупроводника (обычно оксид цинка). По поверхности барабана равномерно распределяется статический заряд. С помощью тонкой проволоки или сетки, называемой коронирующим проводом, на этот провод подается высокое напряжение, вызывающее возникновение вокуг него светящейся ионизированной области, называемой короной. Лазер, управляемый микроконтроллером, генерирует тонкий световой луч, отражающийся от вращающегося зеркала. Этот луч, попадая на фотобарабан, засвечивает на нем элементарные площадки (точки), и в результате фотоэлектрического эффекта в этих точках изменяется электческий заряд.

Для некоторых типов принтеров потенциал поверхности барабана уменьшается от -900 до -200 В. Таким образом, на фотобарабане возникает копия изображения в виде потенциального рельефа.

На следующем рабочем шаге с помощью другого барабана, называемого девелопером (developer), на фотобарабан наносится тонер - мельчайшая красящая пыль. Под действием статического заряда мелкие частицы тонера легко притягиваются к поверхности барабана в точках, подвергшихся экспозиции, и формируют на нем изображение.

Лист бумаги из подающего лотка с помощью системы валиков перемещается к барабану. Затем листу сообщается статический заряд, противоположный по знаку заряду засвеченных точек на барабане. При соприкосновении бумаги с барабаном частички тонера с барабана переносятся (притягиваются) на бумагу. Для фиксации тонера на бумаге листу вновь сообщается заряд и он пропускается между двумя роликами, нагревающими его до температуры около 180° - 200°С. После собственно процесса печати барабан полностью разряжается, очищается от прилипших частиц тонера и готов для нового цикла печати.

Описанная последовательность действий происходит очень быстро и обеспечивает высокое качество печати. При печати на цветном лазерном принтере используются две технологии. В соответствии с первой, широко используемой до недавнего времени, на фотобарабане последовательно для каждого отдельного цвета (Cyan, Magenta, Yellow, Black) формировалось соответствующее изображение, и лист печатался за четыре прохода, что, естественно, сказывалось на скорости и качестве печати. В современных моделях в результате четырех последовательных прогонов на фотобарабан наносится тонер каждого из четырех цветов. Затем при соприкосновении бумаги с барабаном на нее переносятся все четыре краски одновременно, образуя нужные сочетания цветов на отпечатке. В результате достигается более ровная передача цветовых оттенков, почти такая же, как при печати на цветных принтерах с термопереносом красителя.

Принтеры этого класса оборудованы большим объемом памяти, процессором и, как правило, собственным винчестером. На винчестере содержатся разнообразные шрифты и специальные программы, которые управляют работой, контролируют состояние и оптимизируют производительность принтера . Цветные лазерные принтеры имеют довольно крупные габариты и большую массу. Технология процесса цветной лазерной печати весьма сложна и цены на цветные лазерные принтеры еще очень высоки.

Светодиодный принтер: принцип работы, сходство с принтером лазерным и отличия от него

Светодиодную и лазерную технологию цифровой печати роднит использование в обоих случаях электрографического процесса для получения финального отпечатка. Фактически, это устройства одного и того же класса: в обоих случаях источник света, управляемый процессором принтера, формирует на светочувствительном барабане поверхностный заряд, соответствующий требуемому изображению.

Дальше, говоря попросту, вращающийся барабан проходит мимо бункера с тонером, притягивает частички тонера к `засвеченным` местам и переносит тонер на бумагу. Затем тонер закрепляется на бумаге термоэлементом (печкой) и мы получаем на выходе готовый отпечаток. ¶Теперь вернемся назад и внимательнее познакомимся с конструкцией источника света, засвечивающего барабан. Именно в типе используемого источника света и кроется разница между лазерным и светодиодным принтером: в отличие от лазерного блока, в последнем случае используется линейка, состоящая из тысяч светодиодов. Соответственно, светодиоды через фокусирующие линзы освещают поверхность светочувствительного барабана по всей его ширине.

4.Принцип работы сублимационных принтеров. Основные характеристики, достоинства и недостатки.

Сублимационные принтеры появились около десяти лет назад. Тогда они считались экзотикой, узкопрофессиональным оборудованием. Струйные же принтеры изначально были ориентированы на массового пользователя, а значит, эти две группы изделий не конкурировали друг с другом. Качество изображения сублимационных принтеров десятилетней давности несравненно превосходило то, которое могли обеспечить струйники. Зато стоимость печати на последних была чуть не на порядок ниже.

Общий недостаток всех струйных фотопринтеров, вызванный технологическими причинами - полосность печати, которая проявляется в разных моделях в различной степени. В лучшем случае, она незаметна или едва заметна, однако при засорении части сопел или нарушении работы механики принтера отпечаток становится поделенным на малопривлекательные горизонтальные полосы. От этого недостатка полностью свободны сублимационные принтеры, относящиеся к классу термических печатающих устройств.

Технология сублимационной печати происходит от латинского слова sublimare ("возносить") и представляет собой переход вещества при нагревании из твердого состояния в газообразное, минуя жидкое состояние.

Принцип работы сублимационного принтера состоит в следующем: при поступлении задания на печать принтер нагревает пленку с нанесенным на нее красителем, в результате чего краситель испаряется с пленки и наносится на специальную бумагу. В результате все того же нагрева поры бумаги открываются и краситель четко фиксируется на отпечатке, после чего поверхность бумаги вновь становится гладкой и глянцевой. Печать осуществляется в несколько проходов, поскольку на бумагу необходимо перенести в правильных сочетаниях три основных красителя: пурпурный, бирюзовый и желтый.

Поскольку пикселизация и полосность в силу самой технологии печати в данном случае полностью отсутствует, то сублимационные принтеры, работающие со скромным, казалось бы, разрешением в 300х300 точек на дюйм, способны выдавать фотографии, не уступающие по качеству отпечаткам струйных моделей с куда более высоким разрешением. Основные недостатки сублимационных моделей - дороговизна расходных материалов и отсутствие бытовых моделей, работающих с листами формата A4.

Обычный струйный принтер печатает на простой бумаге, тогда как для сублимационного принтера требуется особая бумага и картридж с красителями (красящей лентой), которые обычно продаются в наборе. Стоимость набора на 20 фотографий стандартного формата 10 х 15 см может составлять от $5 до $15. Таким образом, печать на сублимационном принтере обходится в 3-4 раза дороже, чем на струйном, и раз в десять дороже, чем проявка и печать обычных (аналоговых) фотопленок в лаборатории. На рисунке это явно отображено.

5.Принцип работы термических принтеров. Основные характеристики, достоинства и недостатки.

Цветные лазерные принтеры пока не идеальны. Для получения цветного изображения с качеством близким к фотографическому или изготовления допечатных цветных проб используют термические принтеры или, как их еще называют, цветные принтеры высокого класса.

В настоящее время распространение получили три технологии цветной термопечати: струйный перенос расплавленного красителя (термопластичная печать); контактный перенос расплавленного красителя (термовосковая печать); термоперенос красителя (сублимационная печать).

Общим для последних двух технологий является нагрев красителя и перенос его на бумагу (пленку) в жидкой или газообразной фазе. Многоцветный краситель, как правило, нанесен на тонкую лавсановую пленку (толщиной 5 мкм). Пленка перемещается с помощью лентопротяжного механизма, который конструктивно схож с аналогичным узлом игольчатого принтера. Матрица нагревательных элементов за 3-4 прохода формирует цветное изображение.

Термовосковые принтеры переносят краситель, растворенный в воске, на бумагу, нагревая ленту с цветным воском. Как правило, для подобных принтеров необходима бумага со специальным покрытие. Термовосковые принтеры обычно используются для печати деловой графики и другой нефотографической печати.

Для печати изображения, почти не отличающегося от фотографии, и изготовления допечатных проб лучше всего использовать сублимационные принтеры. По принципу работы они аналогичны термовосковым, но переносят с ленты на бумагу только краситель (не имеющий восковой основы).

Принтеры, использующие струйный перенос расплавленного красителя, называют еще восковыми принтерами с твердым красителем. При печати блоки цветного воска расплавляются и выбрызгиваются на носитель, создавая яркие насыщенные цвета на любой поверхности. Полученные таким образом "фотографии" выглядят слегка зернистыми, но удовлетворяют всем критериям фотографического качества. Этот принтер не годится для изготовления диапозитивов, поскольку капли воска после высыхания имеют полусферическую форму и создают сферический эффект.

Имеются термические принтеры, которые совмещают в себе технологию сублимационной и термовосковой печати. Такие принтеры позволяют печатать на одном устройстве как черновые, так и чистовые оттиски.

Скорость печати термических принтеров вследствие инерционности тепловых эффектов невысокая. Для сублимационных принтеров от 0,1 до 0,8 страниц в минуту, а для термовосковых - 0,5-4 страницы в минуту.